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Oblivious transfer - Definition

Oblivious Transfer (OT) is a ubiquitous cryptographic primitive designed to transfer specific
data based on the receiver's choice.
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No further information should be learned by any party

Relevant to this workshop: distribution of keys for GC, Threshold ECDSA, etc..




Extending oblivious transfer - Motivation
e Impagliazzo, Rudich [IR98]
Black-box separation result — OT is impossible without public-key primitives (?)

o Beaver [Beaver96]: OT can be extended

* + Cheap symmetric crypto
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OT, Correlated OT and Random OT
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OT, Correlated OT and Random OT
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OT, Correlated OT and Random OT
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IKNP OT-extension
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IKNP OT extension - Security

e Assuming that Phase 1. of the protocol is passively/actively secure then

— IKNP is passively/actively secure when H is a random oracle
— For passive security it is enough for H to be a correlation robust hash function [IKNP03]

— For active security H has to be a tweakable correlation robust hash function

e To achieve active security we need:
— Prove that Phase 1 is secure

1. Achieve security against a malicious receiver

— Secure instantiation of the building blocks
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Proctecting against a malicious receiver - Attack

q1:t1+x1.A t171+x1~A1 t'f;k+'I1’Ak
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Protecting against a malicious receiver - Attack

q1=t1+(A1,O,...,O) t171+A1 t’f}k

a2 = ta + (0,A,0,...,0) t2,1 t22+ Ao 15 1
ts1 o
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tm,1 e o bk + Ag

® Cp,1 = H(ql, ].) + mop 1 = H(t1 + (Al,O, e ,0)7 ].) + myp 1, can extract Al

e Repeating the attack can recover the entire A and hence all the messages




Protecting against a malicious receiver - Consistency check
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Part Il: Instantiating the Primitives; and Silent OT Extension
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Instantiating the Base OTs [Masny-Rindal 19]

Some instantiations allow corrupt parties to bias random-OT outputs

« (OT or OT™) 2% (COT~, ROT™ or OT)
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Instantiating the Base OTs [Masny-Rindal 19]
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Instantiating the Base OTs [Masny-Rindal 19]

Some instantiations allow corrupt parties to bias random-OT outputs
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Instantiating the Base OTs [Masny-Rindal 19]

Some instantiations allow corrupt parties to bias random-OT outputs

« (OT or OT™) 2% (COT~, ROT™ or OT)

« (OT or OT") 2224 ROT

e COT™ or ROT™ enough for OT and most applications
— But not always: e.g. be careful with ROT™ and some PSI protocols
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Instantiating the Base OTs [Masny-Rindal 19]

Some instantiations allow corrupt parties to bias random-OT outputs

« (OT or OT™) 2% (COT~, ROT™ or OT)

(0T or OT7) 2L2% ROT

COT™ or ROT™ enough for OT and most applications
— But not always: e.g. be careful with ROT™ and some PSI protocols

If true ROT needed, protocols can be modified:
o1~ 2= coTm < ROT
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Instantiating the hash function H(x,i) [GKWY 20]

Security requirement: form of correlation robustness
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e SHA 256: straightforward, but slow

o Fixed-key block cipher, e.g. AES

— ~ 10x faster
— Incorporating index i: can be done with one extra AES call [GKWY20]
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Instantiating the hash function H(x,i) [GKWY 20]

Security requirement: form of correlation robustness

e SHA 256: straightforward, but slow

o Fixed-key block cipher, e.g. AES

— ~ 10x faster
— Incorporating index i: can be done with one extra AES call [GKWY20]

e What if ¢ is omitted?
— Can lead to attack, depending on base OTs [MR19]
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Silent OT Extension: a Different Approach to Correlated OT [BCGIKS19]
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Silent OT Extension: a Different Approach to Correlated OT [BCGIKS19]
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Silent OT Extension: a Different Approach to Correlated OT [BCGIKS19]
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Silent OT: compress vector-OLE with a pseudorandom correlation generator (PCG)
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From a PCG to Silent OT Extension

1. Setup protocol for generating keys [BCGIKRS19, SGRR19]

— 2-round setup for puncturable PRF

2. Malicious security [BCGIKRS19,YWLZW20]

— Consistency check (similar to [KOS15]), < 10% overhead
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Security of Silent OT: variants of Learning Parity with Noise

Primal-LPN:

generator matrix G
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Security of Silent OT: variants of Learning Parity with Noise

Primal-LPN: Dual-LPN:
generator matrix G parity check matrix H
‘ + % I
limited to quadratic stretch arbitrary polynomial stretch
G can be sparse = faster H must be dense; use quasi-cyclic codes
Security as in [Ale03] Security as in BIKE, HQC schemes
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Comparing practical, actively secure OT extension protocols

128-bit security; estimates for 10 million random OTs

Reference Silent  Rounds Communication Computation Based on
[KOS15] X 3/5* 160 MB ~0.2s crh
[BCGIKRS19] v 2/4* 80 kB ~ 2.0s QC-reg-LPN, crh
[YWLZW20] v o(1) 2.4 MB ~ 0.3s sparse-reg-LPN, crh
[YWLZW20] v 0(1) 2.1 MB ~ 0.2s sparse-LPN, crh

* passive/active;

crh = correlation robust hash function
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Conclusion

e Pitfalls when implementing OT extension
— Take care with hashing, and security of random OT

e Many flavours of OT extension to choose from:
— Correlated OT, random OT
— l-out-of-2, 1-out-of-N
— IKNP-style, silent
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